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RESUMEN

Este artículo es una guía práctica sobre el análisis exploratorio de datos (EDA) para investigadores con conocimientos 
básicos en estadística. EDA ayuda a examinar las relaciones, los patrones y las anomalías de los datos con el fin de de-
terminar la dirección de la investigación y los métodos estadísticos a seguir. Mediante ejemplos prácticos con código en 
R, el estudio equipa a los lectores con el conocimiento y las habilidades para extraer información valiosa de estadísticas 
descriptivas y visualizaciones.

Palabras claves: Análisis exploratorio de datos, estadística descriptiva, tendencia central, variación.

ABSTRACT

The present paper is a practical guide on exploratory data analysis (EDA) for researchers with limited  background in sta-
tistics. EDA helps examine data relationships, patterns, and anomalies to, ultimately, determine the next steps and direc-
tion of the research. By providing hands-on examples and sample code in R, the paper equips readers with the knowledge 
and skills to draw insights from basic yet essential data summaries and visualizations. 

Keywords: Exploratory data analysis, descriptive statistics, central tendency, variation. 
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INTRODUCTION

The present paper is a practical introduction to des-
criptive statistics for biological or health-related data. 
The methods and tools discussed herein cover ba-
sic yet essential steps involved in exploratory data 
analysis (EDA). EDA is an iterative process in which 
researchers (a) generate questions about a scienti-
fic problem; (b) search for answers by exploring the 
relationships in the data at hand; and (c) use the 
acquired knowledge to refine the initial question or 
pose new questions5. EDA is fundamental to the data 
analysis process because it suggests the logical 
next steps and direction of the research. It allows us 
to assess data quality, identify data patterns, validate 
assumptions, and ponder over statistical methods to 
apply to the data. Ultimately, it can give us a good 
idea of which questions the data can answer and 
which ones it cannot. 

There are several statistical programs in which data 
analysis can be performed. This paper provides 
sample code in R to give readers a practical tool 
box for the methods discussed in the following sec-
tions. R is free and one of the most popular softwares 
among statisticians. R can be installed from https://
www.r-project.org/. We recommend using RStudio 
Desktop, which is a free, friendly user interface for 
R programming available for download at https://
www.rstudio.com/products/rstudio/download/. We 
use base R in the paper. However, note that there are 
multiple R packages for data wrangling and visua-
lization like dplyr and ggplot2. You can find coding 
guides for these packages and more in the Resour-
ces section. 

Throughout the paper we will be drawing from Sha-
hbaba’s introductory book to biostatistics using R4. 
Additionally, we analyze the dataset called “Survival 
from Malignant Melanoma” (referred to as melanoma 
moving forward) to exemplify methods and tools. The 
dataset contains demographic and tumor characte-
ristics of patients with malignant melanoma who had 
their tumours surgically removed at the University 
Hospital of Odense, Denmark, from 1962 to 19771. 
This dataset is publicly available in the “boot” packa-
ge in R. Follow the code below to access the dataset. Sample Code 

Install package needed to load in dataset 
# Install package
install.packages("boot")
# Access packages
library("boot")
# Access data melanoma
melanoma <- get(data("melanoma"))
# View dataset in cell format
View(melanoma)

Transform categorical variables 
melanoma$status = as.factor(melanoma$status)
melanoma$ulcer = as.factor(melanoma$ulcer)
melanoma$sex  = as.factor(melanoma$sex)

Univariate EDA - Nominal Categorical Variable 
# Frequency table for sex
table(melanoma$sex)

## 
##   0   1 
## 126  79

# Eelative frequency table for sex
table(melanoma$sex)/(sum(!is.na(melanoma$sex)))*100

## 
##        0        1 
## 61.46341 38.53659

# Bar graph for Sex
plot(melanoma$sex, main="Bar Plot of Sex", xlab="Sex",ylab="Frequency")

Sampling

Research starts with a question. Ideally, we would 
like to answer it using information from the entire po-
pulation of interest. However, this is oftentimes not 
feasible due to the limited availability of resources 
or to ethical considerations. A representative sam-
ple of the population is selected instead. With cau-
tion, the conclusions reached via statistical inferen-
ce methods can be then applied to the population 
from where the sample was obtained. The melanoma 
dataset contains attributes of 205 patients with ma-
lignant melanoma in Denmark. Hence, any inference 
reached from this dataset cannot be generalized to 
patients with benign melanoma or even to patients in 
other Denmark hospitals if, for instance, the Universi-
ty Hospital treats more aggressive cases than other 
hospitals. 

Samples are selected randomly and, unless noted 
otherwise, the members are assumed to be inde-
pendent of each other. That is, the selection of one 
participant does not affect the selection of another 
one. For each subject or observation, we collect va-
rious characteristics that are related to the question 
of interest. Often called variables, these traits can 
take any form and value. For instance, the melanoma 
dataset contains the variable “thickness”, which me-
asures the tumour thickness in millimeters and has 
been found to be an important prognostic factor of 
malignant melanoma1. Statistical inference allows us 
to understand how tumour thickness is related to the 
presence of malignant melanoma in the target po-
pulation. Variables follow distributions, which tell us 
the possible values a variable can take and the likeli-
hood of observing those values in a random sample 
from the population.

Univariate Exploratory Data Analysis

The first step of EDA consists of visualizing and 
summarizing the data. Data visualizations give us a 
high-level understanding of data patterns, whereas 
data summaries make it manageable to describe 
large amounts of data. It is helpful to start EDA by 
analyzing one variable at a time. Variables can be ei-
ther categorical or numerical, and they can be further 
classified as described in Figure 1. 

Introduction to Univariate and Bivariate Exploratory Data 
Analysis
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Variable Types

Categorical Numerical

Nominal Ordinal Count Continuous

Categories are 
arbitrary labels.  

No intrinsic 
order between 

categories.  

Categories can be 
meaningfully  ordered by rank.  

Countable 
set of values. 

Figure 1. Variable types.

 

names(melanoma) 
[1] "time"      "status"    "sex"       "age"       "year"       
[6] "thickness"      "ulcer" 

 
In the data panel at the right hand side of RStudio, we can also check the variable types 
and values for several of the first observations.  
 

 
Figure 2: Data variables and variable types observed in the data panel of RStudio 
  
Note that all variables are numerical because R was not able to automatically recognize 
categorical variables as such. Therefore, we need to convert them to categorical.  
 

melanoma$status = as.factor(melanoma$status) 
melanoma$ulcer = as.factor(melanoma$ulcer) 
melanoma$sex  = as.factor(melanoma$sex) 

 
The variables status (1 = died from melanoma, 2 = still alive, 3 = died from causes other 
than melanoma), sex (1 = male, 0 = female), and ulcer (ulcer in tumour, 1 = present, 0 = 
absent) are nominal variables because they are groupings that do not preserve any rank 
ordering. On the other hand, if we were to group age into categories (i.e. 1 = age <18, 2 
= age between 18 & 65, 3 = age > 65), we would have an ordinal variable where 
categories follow a meaningful order. By exploring the behaviour of age as a categorical 
variable versus a numerical variable, we can decide which variable type to keep in a 
statistical model.  
 
Let’s consider the numerical variables age (in years), thickness (tumour thickness in 
millimeters), and time (survival time in days). Among them, age and time are count 
variables, whereas thickness is a continuous variable because it has uncountable set 

In the data panel at the right hand side of RStudio, we can also check the variable types and values for several 
of the first observations. 

Figure 2. Data variables and variable types observed in the data panel of RStudio.

Note that all variables are numerical because R was not able to automatically recognize categorical variables 
as such. Therefore, we need to convert them to categorical.

Sample Code 
Install package needed to load in dataset 
# Install package
install.packages("boot")
# Access packages
library("boot")
# Access data melanoma
melanoma <- get(data("melanoma"))
# View dataset in cell format
View(melanoma)

Transform categorical variables 
melanoma$status = as.factor(melanoma$status)
melanoma$ulcer = as.factor(melanoma$ulcer)
melanoma$sex  = as.factor(melanoma$sex)

Univariate EDA - Nominal Categorical Variable 
# Frequency table for sex
table(melanoma$sex)

## 
##   0   1 
## 126  79

# Eelative frequency table for sex
table(melanoma$sex)/(sum(!is.na(melanoma$sex)))*100

## 
##        0        1 
## 61.46341 38.53659

# Bar graph for Sex
plot(melanoma$sex, main="Bar Plot of Sex", xlab="Sex",ylab="Frequency")

The variables status (1 = died from melanoma, 2 = 
still alive, 3 = died from causes other than melano-
ma), sex (1 = male, 0 = female), and ulcer (ulcer in 
tumour, 1 = present, 0 = absent) are nominal varia-
bles because they are groupings that do not preser-
ve any rank ordering. On the other hand, if we were 
to group age into categories (i.e. 1 = age <18, 2 = 

age between 18 & 65, 3 = age > 65), we would have 
an ordinal variable where categories follow a mea-
ningful order. By exploring the behaviour of age as a 
categorical variable versus a numerical variable, we 
can decide which variable type to keep in a statisti-
cal model. 

Introduction to Univariate and Bivariate Exploratory Data 
Analysis
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Let’s consider the numerical variables age (in 
years), thickness (tumour thickness in millimeters), 
and time (survival time in days). Among them, age 
and time are count variables, whereas thickness is a 
continuous variable because it has uncountable set 
of numbers between two values1. This means that, 
between any two values of this variable, we can still 
find an in-between value. 

Exploring Categorical Variables

Frequencies and Relative Frequencies

Categorical variables can be summarized by coun-
ting the number of times each level or category has 
been observed in the data. In the melanoma dataset, 
you probably wonder how many participants are fe-
male and how many are male. This number is called 
a frequency. The frequency table below shows that 
in the dataset, there are 126 female and 79 male ob-
servations. 

 

of numbers between two values1. This means that, between any two values of this 
variable, we can still find an in-between value.  
 
 
3.1 Exploring Categorical Variables 
 
Frequencies and Relative Frequencies 
 
Categorical variables can be summarized by counting the number of times each level or 
category has been observed in the data. In the melanoma dataset, you probably wonder 
how many participants are female and how many are male. This number is called a 
frequency. The frequency table below shows that in the dataset, there are 126 female 
and 79 male observations.  
 

table(melanoma$sex) 
  0   1  
126  79  

 
If we wanted to know this information in terms of proportions or percentages, we can 
create a relative frequency table as the one below that indicates that, of the total sample 
size of n=205 participants, 61% is female and the remaining 39% is male. Relative 
frequencies are proportions of the sample size. Hence, they will always sum to 1.  
 

prop.table(table(melanoma$sex))*100 
       0        1  
61.46341 38.53659  

 
 
Bar Graphs 
 
The frequencies of categorical variables are visualized in bar graphs. The x-axis displays 
each category, while the y-axis represents the observed frequencies or relative 
frequencies. 
 

plot(melanoma$sex, main="Bar Plot of Sex", xlab="Sex", 

 
1 In the context of probability and statistical inference, categorical variables - both nominal and 
ordinal - and count numerical variables are considered discrete random variables. Continuous 
numerical variables are considered continuous random variables.   
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Figure 3: Bar plot of sex 
 
The relative frequencies of categorical variables can also be plotted in pie charts.  
  
 
3.2 Exploring Numerical Variables 
 
Numerical variables can be summarized by the central tendency and the variation of 
the values. Central tendency refers to the location at which most of the values are 
gathered and variation refers to the spread or dispersion of the values around the center 
of the distribution.  
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The sample mean is the average of all the values of a numerical variable. It is computed 
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The relative frequencies of categorical variables can 
also be plotted in pie charts. 

Exploring Numerical Variables

Numerical variables can be summarized by the cen-
tral tendency and the variation of the values. Cen-
tral tendency refers to the location at which most of 
the values are gathered and variation refers to the 
spread or dispersion of the values around the center 
of the distribution. 

Measures of Central Tendency and Location

The main measures of central tendency are the sam-
ple mean and the sample median. The sample mean 
is the average of all the values of a numerical varia-
ble. It is computed like any average by adding all 
the values and then dividing by the sample size. The 
mean age of the melanoma patients is 53.5 years2. 

2 The function mean() in R supports the option to remove missing values. Missing 
values are an important part of EDA and there are various statistical methods to deal 
with them that are not within the scope of this paper. In the melanoma dataset there 
are no missing values. 

 

like any average by adding all the values and then dividing by the sample size. The mean 
age of the melanoma patients is 53.5 years2.  
 

mean(melanoma$age, na.rm = FALSE)) 
[1] 52.46341 

  
The sample median is the middlemost value of a distribution. It is calculated by first 
sorting the observed values in ascending order. If the sample size is an uneven number, 
then the sample median is the number at the middle of the sorted observations. In the 
melanoma dataset, the median age of participants is 54.   
 

median(melanoma$age, na.rm = FALSE) 
[1] 54 

 
Besides the measures of central tendency, the distribution of a numerical variable can be 
summarized by other measures of location like the minimum, maximum, and specific 
quantile. 
 
The minimum is the smallest value that a variable takes in the sample. Likewise, the 
maximum is the largest value of a variable in the sample.  
 

min(melanoma$age) 
[1] 4 
max(melanoma$age) 
[1] 95 

 
A quantile is the score at which variable values are divided into equally sized, adjacent 
subgroups. For example, the median is the 0.5 quantile because it splits the data in half. 
If we were to divide the sorted values of a variable in fourths, we would obtain 4 quartiles, 
where each quartile represents the following: 𝑄𝑄1is the value below which 25% of the data 
falls, 𝑄𝑄2 is the median, 𝑄𝑄3 is the value below which 75% of the data falls, 𝑄𝑄4is the 
maximum value. The interquartile range (IQR) is the difference between 𝑄𝑄3 and 𝑄𝑄1 and 
gives us a sense of the spread of the data.  
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that are not within the scope of this paper. In the melanoma dataset there are no missing 
values.  
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Besides the measures of central tendency, the distri-
bution of a numerical variable can be summarized by 
other measures of location like the minimum, maxi-
mum, and specific quantile.

The minimum is the smallest value that a variable 
takes in the sample. Likewise, the maximum is the 
largest value of a variable in the sample. 
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A quantile is the score at which variable values are 
divided into equally sized, adjacent subgroups. For 
example, the median is the 0.5 quantile because it 
splits the data in half. If we were to divide the sor-
ted values of a variable in fourths, we would obtain 
4 quartiles, where each quartile represents the fo-
llowing: Q1 is the value below which 25% of the data 
falls, Q2 is the median, Q3 is the value below which 
75% of the data falls, Q4 is the maximum value. The 
interquartile range (IQR) is the difference between 
Q3 and Q1 and gives us a sense of the spread of the 
data. 
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Figure 5. Box plot of thickness.

The thick line inside the box represents the median 
of 2.92. The box stretches from Q1=0.97 to Q3=3.56, 
so its length represents the IQR and encompasses 
the middle 50% of the values of the sorted observa-
tions. The dashed lines coming out from the box are 
commonly known as whiskers. The bottom whisker 
extends to either the minimum or to the value Q1-(1.5 
x IQR), whichever is reached first. Likewise, the top 
whisker extends to whichever value is reached first, 
the maximum or the value Q3+(1.5 x IQR). 

Taking a deeper look into the distribution of thick-
ness, we notice that, although 75% of the observa-
tions are smaller than Q3= 3.56mm, the maximum 
value is far off at 17.42mm. This suggests that there 
are unusually high values that do not seem to follow 
the overall variable distribution. These values are 
represented by the hollow circles in the plot. Values 
that are too large or too small are called outliers; they 
can be data entry errors or unusual observations that 
skew or slant the distribution of a variable3. As a rule 
of thumb, outliers are values that are smaller than Q1 
or larger than Q3 or that fall 3 or more standard de-
viations from the mean (we cover standard deviation 
later in this section). Although the sample mean is 
a very useful statistic for central tendency, it is very 
sensitive to unusual values. The sample median and 
IQR are more robust measures. 

Histograms

We can visualize the effect of outliers on the sample 
mean and median by comparing the distribution of 
age and thickness. Histograms are commonly used 
to visualize numerical variables because their sha-
pe shows the overall location and spread of a varia-
ble. Histograms are similar to bar graphs; the x-axis 

groups the values into a defined number of intervals 
or bins and the y-axis shows the frequency or number 
of the observations that fall within each bin. The sum 
of the bar heights is equal to the sample size n. It is 
always important to play around with the binwidths of 
histograms since they can reveal different patterns. 

 

outliers are values that are smaller than 𝑄𝑄1or larger than 𝑄𝑄3or that fall 3 or more standard 
deviations from the mean (we cover standard deviation later in this section). Although the 
sample mean is a very useful statistic for central tendency, it is very sensitive to unusual 
values. The sample median and IQR are more robust measures.  
 
 
Histograms 
 
We can visualize the effect of outliers on the sample mean and median by comparing the 
distribution of age and thickness. Histograms are commonly used to visualize numerical 
variables because their shape shows the overall location and spread of a variable. 
Histograms are similar to bar graphs; the x-axis groups the values into a defined number 
of intervals or bins and the y-axis shows the frequency or number of the observations that 
fall within each bin. The sum of the bar heights is equal to the sample size n. It is always 
important to play around with the binwidths of histograms since they can reveal different 
patterns.  
 
 
 

hist(melanoma$age, main="Histogram of Age", 
xlab="Age",ylab="Frequency") 

 

 
 

information about the distribution of the variable. There is no golden rule for the treatment of 
outliers and the methods vary based on the question of interest and the nature of the data.  
 

3 There are various ways of handling outliers; if they are data errors, we can drop 
or trim them. However, if unusual values are true outliers, we should keep them 
because they provide important information about the distribution of the variable. 
There is no golden rule for the treatment of outliers and the methods vary based on 
the question of interest and the nature of the data.

Figure 6. Histograms of age and thickness. The 
solid line is the mean, while the dotted line is the 

median.

Figure 6 shows the histograms of age and thickness. 
We notice that the sample mean (solid line) and me-
dian (dotted line) of age are pretty close to each 
other whereas the ones of thickness are far apart. 
In fact, the distribution of thickness is stretched to 
the right. This is called a right-skewed distribution. 
Although the majority of observations are centered 
around the sample median of 2mm, the large out-
liers give the histogram a long right tail and move 
the sample mean towards the right. That is, the mean 
moves more towards the direction of the outliers than 
the median does. In the case of a left-skewed dis-
tribution (not pictured), the sample mean is smaller 
than the sample median because the left tail shifts 
the mean towards the left. 

For age, we see a symmetric distribution around the 
center of the data where the left side roughly mirrors 
the right side. Indeed, the sample mean and sample 
median (as well as the sample mode) are very close 
to each other. Hence, all of these metrics can be re-
presentations of the center of the distribution. 

Both symmetric and skewed histograms are unimo-
dal because they have one peak. If a distribution has 
two peaks, then it is described as bimodal4.

Measures of Variation

Besides understanding basic summary statistics of 
central tendency and location, it is fundamental for 

4 Usually, a bimodal histogram suggests that there are two heterogeneous subpopu-
lations within the population.  Bimodal or multimodal distributions are out of the 
scope of the present paper. 
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EDA to understand the dispersion of the values of a 
numerical variable. When collecting sample data, the 
values of a numerical variable will vary among each 
other. The sample standard deviation (s) measures 
the average distance of each data point xi and the 
sample mean x. That is, the larger the standard de-
viation, the further away the values are from the mean 
(i.e. the larger the dispersion). Viceversa, the smaller 
the standard deviation, the more concentrated the 
data is around the mean. The formula of the sample 
standard deviation is the following: 

 

Figure 6: Histograms of age and thickness. The solid line is the mean, while the dotted 
line is the median. 
 
Figure 6 shows the histograms of age and thickness. We notice that the sample mean 
(solid line) and median (dotted line) of age are pretty close to each other whereas the 
ones of thickness are far apart. In fact, the distribution of thickness is stretched to the 
right. This is called a right-skewed distribution. Although the majority of observations are 
centered around the sample median of 2mm, the large outliers give the histogram a long 
right tail and move the sample mean towards the right. That is, the mean moves more 
towards the direction of the outliers than the median does. In the case of a left-skewed 
distribution (not pictured), the sample mean is smaller than the sample median because 
the left tail shifts the mean towards the left.  
 
For age, we see a symmetric distribution around the center of the data where the left 
side roughly mirrors the right side. Indeed, the sample mean and sample median (as well 
as the sample mode) are very close to each other. Hence, all of these metrics can be 
representations of the center of the distribution.  
 
Both symmetric and skewed histograms are unimodal because they have one peak. If a 
distribution has two peaks, then it is described as bimodal4. 
 
 
Measures of Variation 
 
Besides understanding basic summary statistics of central tendency and location, it is 
fundamental for EDA to understand the dispersion of the values of a numerical variable. 
When collecting sample data, the values of a numerical variable will vary among each 
other. The sample standard deviation (𝒔𝒔) measures the average distance of each data 
point 𝑥𝑥𝑖𝑖 and the sample mean 𝑥𝑥. That is, the larger the standard deviation, the further 
away the values are from the mean (i.e. the larger the dispersion). Viceversa, the smaller 
the standard deviation, the more concentrated the data is around the mean. The formula 
of the sample standard deviation is the following:  
 

𝑠𝑠 = √∑𝑛𝑛
𝑖𝑖=1 (𝑥𝑥𝑖𝑖  −  𝑥𝑥)2

𝑛𝑛 − 1  

 

 
4 Usually, a bimodal histogram suggests that there are two heterogeneous subpopulations within 
the population.  Bimodal or multimodal distributions are out of the scope of the present paper.  

Note that the denominator in the sample variance is 
n -1 instead of the sample size n  because we need 
to increase the dispersion measurement by a small 
amount to account for the fact that we are dealing 
with a sample instead of a population. The sample 
standard deviation of age is 16.7 years. The mean 
age is 52 years. In a symmetric distribution like the 
one of age, displayed in Figure 6, it is estimated that 
68% of the observations falls within one standard 
deviation from the mean (x ± s). That is, roughly 

 

Note that the denominator in the sample variance is 𝑛𝑛 − 1instead of the sample size 𝑛𝑛  
because we need to increase the dispersion measurement by a small amount to account 
for the fact that we are dealing with a sample instead of a population. The sample 
standard deviation of age is 16.7 years. The mean age is 52 years. In a symmetric 
distribution like the one of age, displayed in Figure 6, it is estimated that 68% of the 
observations falls within one standard deviation from the mean (𝑥𝑥  ± 𝑠𝑠). That is, roughly 
speaking, 68% of participants in the study are aged between 35 and 69 years. Likewise, 
approximately 95% of the observations fall within two standard deviations from the mean 
(𝑥𝑥  ± 2𝑠𝑠), in this case, 18 and 86 years old.  
 

#Standard deviation of age 
sd(melanoma$age) 
[1] 16.67171 
 
#Range of age of 68% of participants 
mean(melanoma$age) - sd(melanoma$age) 
[1] 35.7917 
mean(melanoma$age) + sd(melanoma$age) 
[1] 69.13513 

 
The sample variance 𝒔𝒔𝟐𝟐 is the squared sample standard deviation. Hence, the sample 
variance is measured in squared units of the variable of interest. To measure dispersion 
in the same units as the original data, we report the standard deviation. Note that because 
the sample variance and standard deviation take into account the mean, both measures 
are sensitive to outliers.  
 
 
3.3 Section Summary 
 

The sample variance s2 is the squared sample stan-
dard deviation. Hence, the sample variance is mea-
sured in squared units of the variable of interest. To 
measure dispersion in the same units as the original 
data, we report the standard deviation. Note that be-
cause the sample variance and standard deviation 
take into account the mean, both measures are sen-
sitive to outliers. 

speaking, 68% of participants in the study are aged 
between 35 and 69 years. Likewise, approximately 
95% of the observations fall within two standard de-
viations from the mean (x  ± 2s), in this case, 18 and 
86 years old. 

Section Summary

Univariate EDA

Summary Visualizations

Categorical Continuous Categorical Continuous 

- Frequencies
- Relative Frequencies

- Mode

- Mean, Median, Mode
- Maximum, Minimum, 
Interquartile Range,  Quantiles
- Variation, Standard  

- Bar Plots
- Pie Charts 

- Box Plots
- Histograms 

Figure 7. Summary of univariate exploratory data analysis.

Bivariate Exploratory Data Analysis

In the univariate analysis performed in section 3, we 
were able to answer the following questions via sum-
mary statistics and visualizations: 

• How many male and female participants were 
there in the study? 

• What is the mean age of participants? How does 
it vary among subjects? How old are the youn-
gest and oldest participants? 

• On average, what was the size of the tumours 
that were surgically removed? Did some partici-
pants have thicker tumours than others? 

Now, imagine that we wanted to answer more elabo-
rate questions like the ones below:

• Does the presence of an ulcer in a melanoma 
tumour vary by sex?

• Is age associated with melanoma survival sta-
tus?
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• How does age relate to tumour thickness? 

To explore these inquiries, it is necessary to evaluate 
the relationships between variables in what is called 
bivariate EDA. Note that, rather than making formal 
conclusions, the objective of this stage is to identify 
possible relationships and measure their strength. 
Just like in univariate EDA, the statistics and visuali-
zations used to explore the observed data in bivariate 
EDA vary by the type of variables we are analyzing.   

Two categorical variables

Contingency tables are used to investigate the pos-
sible relationship between two categorical variables. 
Consider the variables sex and ulcer. Each cell in 
the table shows the frequency of each level combi-
nation of sex (1 = male, 0 = female) and ulcer (ulcer 
in tumour, 1 = present, 0 = absent). For example, 79 
participants were female and their tumours did not 
have ulcers. 

 

objective of this stage is to identify possible relationships and measure their strength. Just 
like in univariate EDA, the statistics and visualizations used to explore the observed data 
in bivariate EDA vary by the type of variables we are analyzing.    
 
 
4.1 Two categorical variables 
 
Contingency tables are used to investigate the possible relationship between two 
categorical variables. Consider the variables sex and ulcer. Each cell in the table shows 
the frequency of each level combination of sex (1 = male, 0 = female) and ulcer (ulcer in 
tumour, 1 = present, 0 = absent). For example, 79 participants were female and their 
tumours did not have ulcers.  
 
cont_table <- addmargins(table(melanoma$sex,melanoma$ulcer)) 
names(dimnames(cont_table)) <- c("Sex", "Ulcer") 
cont_table 
     Ulcer 
Sex     0   1 Sum 
  0    79  47 126 
  1    36  43  79 
  Sum 115  90 205 

 
We can analyze the same information with sample proportions. A visual way of 
displaying them is with a stacked bar plot as shown in Figure 8. Each bar is divided into 
two sub-bars stacked end to end. Each sub-bar represents the proportion of the 
categorical variable 𝑎𝑎 for a level of the second categorical variable 𝑏𝑏. 
 

plot(melanoma$sex, melanoma$ulcer,main="Bar Plot of Sex vs. Ulcer", 
xlab="Sex", ylab="Ulcer") 

 

We can analyze the same information with sample 
proportions. A visual way of displaying them is with 
a stacked bar plot as shown in Figure 8. Each bar is 
divided into two sub-bars stacked end to end. Each 
sub-bar represents the proportion of the categorical 
variable a for a level of the second categorical varia-
ble b.

 

objective of this stage is to identify possible relationships and measure their strength. Just 
like in univariate EDA, the statistics and visualizations used to explore the observed data 
in bivariate EDA vary by the type of variables we are analyzing.    
 
 
4.1 Two categorical variables 
 
Contingency tables are used to investigate the possible relationship between two 
categorical variables. Consider the variables sex and ulcer. Each cell in the table shows 
the frequency of each level combination of sex (1 = male, 0 = female) and ulcer (ulcer in 
tumour, 1 = present, 0 = absent). For example, 79 participants were female and their 
tumours did not have ulcers.  
 
cont_table <- addmargins(table(melanoma$sex,melanoma$ulcer)) 
names(dimnames(cont_table)) <- c("Sex", "Ulcer") 
cont_table 
     Ulcer 
Sex     0   1 Sum 
  0    79  47 126 
  1    36  43  79 
  Sum 115  90 205 

 
We can analyze the same information with sample proportions. A visual way of 
displaying them is with a stacked bar plot as shown in Figure 8. Each bar is divided into 
two sub-bars stacked end to end. Each sub-bar represents the proportion of the 
categorical variable 𝑎𝑎 for a level of the second categorical variable 𝑏𝑏. 
 

plot(melanoma$sex, melanoma$ulcer,main="Bar Plot of Sex vs. Ulcer", 
xlab="Sex", ylab="Ulcer") 

 

Figure 8. Bar plot of sex vs. ulcer.

The proportion of female participants that had an ul-
cerated tumour was pf = 47/126 = 0.37. The propor-
tion of male participants with ulcerated tumours was 
pm = 43/79 = 0.54. Since, pm > pf, we can say that the 
risk of having an ulcer in a melanoma tumour was lar-
ger for male than female participants. This suggests 
a potential relationship between sex and ulcer, which 
can be measured with a difference in proportions (pm 
- pf) or, more commonly, a relative proportion (pm / pf). 
The relative proportion of having an ulcerated tumour 
is 0.54/0.37=1.46, which means that the risk is 1.46 
times higher for men than women. The relative pro-
portion is often referred to as the relative risk (RR). 

Another common relative measure for binary catego-
rical variables is the sample odds, which is the ratio 
of the likelihood that the event will happen (p) to the 
likelihood that the event will not happen (1 - p). For 
instance, the sample odds of an ulcerated melano-
ma tumour in women is σf = pf / (1 - pf) =0.37 / (1-
0.37)=0.58 and in men is σm =  pm / (1 - pm) =0.54 / 
(1-0.54)=1.17. We can compare both odds by com-
puting the popular measure called sample odds ratio 
(OR). The odds of having an ulcerated tumour is 2 
times higher for men than women.

 

 
Figure 8: Bar plot of sex vs. ulcer 
 
The proportion of female participants that had an ulcerated tumour was 𝑝𝑝𝑓𝑓 = 47/126 =
0.37. The proportion of male participants with ulcerated tumours was 𝑝𝑝𝑚𝑚 = 43/79 = 0.54. 
Since, 𝑝𝑝𝑚𝑚 > 𝑝𝑝𝑓𝑓, we can say that the risk of having an ulcer in a melanoma tumour was 
larger for male than female participants. This suggests a potential relationship between 
sex and ulcer, which can be measured with a difference in proportions (𝒑𝒑𝒎𝒎 − 𝒑𝒑𝒇𝒇) or, 
more commonly, a relative proportion (𝑝𝑝𝑚𝑚/𝑝𝑝𝑓𝑓). The relative proportion of having an 
ulcerated tumour is 0.54/0.37 = 1.46, which means that the risk is 1.46 times higher for 
men than women. The relative proportion is often referred to as the relative risk (RR).  
 
Another common relative measure for binary categorical variables is the sample odds, 
which is the ratio of the likelihood that the event will happen (𝑝𝑝) to the likelihood that the 
event will not happen (1 − 𝑝𝑝). For instance, the sample odds of an ulcerated melanoma 
tumour in women is 𝜎𝜎𝑓𝑓 =  𝑝𝑝𝑓𝑓 / (1 − 𝑝𝑝𝑓𝑓)  = 0.37 / (1 − 0.37) = 0.58 and in men is 𝜎𝜎𝑚𝑚 =
 𝑝𝑝𝑚𝑚 / (1 − 𝑝𝑝𝑚𝑚)  = 0.54 / (1 − 0.54) = 1.17. We can compare both odds by computing the 
popular measure called sample odds ratio (OR). The odds of having an ulcerated 
tumour is 2 times higher for men than women. 
 
𝑂𝑂𝑂𝑂𝑚𝑚𝑓𝑓 = 𝜎𝜎𝑚𝑚

𝜎𝜎𝑓𝑓
= 1.17

0.58 = 2  

 
Both the relative risk and odds ratio measure the 
strength of the relationship between two binary varia-
bles. If the RR or OR is equal to 1, it means that there 
is no relationship between the two categorical varia-
bles. On the contrary, a RR or OR that is smaller or 
larger than 1 suggests a strong relationship between 
the two variables. 

What is, then, the difference between the two me-
asures and when should we report each one? As 
described by Ranganathan et al., for rare events, the 
RR and OR are similar3. However, for more common 
events, the odds ratio tends to show a stronger rela-
tionship than the relative risk. Indeed, in the example 
of tumour ulceration by sex, the OR of 2 is larger than 
the RR of 1.46. Although the relative risk can be a 
more accurate measure in such cases, it is oftenti-
mes not feasible to compute this measure because 
it requires to know the total number of both exposed 
and non-exposed groups (i.e. both levels of a binary 
variable).

One categorical and one numerical variable

To explore the relationship between a categorical and 
a numerical variable, we compare the distribution of 
the numerical variable for each level of the categori-
cal variable. If the distribution changes by level, we 
hypothesize that the two variables are related. Let’s 
explore the question, is survival status associated 
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with the age of patients? As shown in the table below, 
the mean age is different for each status level; peo-
ple who died from melanoma or from other causes 
are, on average, older than the ones who were still 
alive at the end of the study.

 

Both the relative risk and odds ratio measure the strength of the relationship between two 
binary variables. If the RR or OR is equal to 1, it means that there is no relationship 
between the two categorical variables. On the contrary, a RR or OR that is smaller or 
larger than 1 suggests a strong relationship between the two variables.  
 
What is, then, the difference between the two measures and when should we report each 
one? As described by Ranganathan et al., for rare events, the RR and OR are similar 3. 
However, for more common events, the odds ratio tends to show a stronger relationship 
than the relative risk. Indeed, in the example of tumour ulceration by sex, the OR of 2 is 
larger than the RR of 1.46. Although the relative risk can be a more accurate measure in 
such cases, it is oftentimes not feasible to compute this measure because it requires to 
know the total number of both exposed and non-exposed groups (i.e. both levels of a 
binary variable). 
 
4.2 One categorical and one numerical variable 
 
To explore the relationship between a categorical and a numerical variable, we compare 
the distribution of the numerical variable for each level of the categorical variable. If the 
distribution changes by level, we hypothesize that the two variables are related. Let’s 
explore the question, is survival status associated with the age of patients? As shown in 
the table below, the mean age is different for each status level; people who died from 
melanoma or from other causes are, on average, older than the ones who were still alive 
at the end of the study. 
 

aggregate(melanoma$age, list(melanoma$status), mean) 
 Status                                     Mean Age 
 1=Died from melanoma                       55.08772 
 2=Still alive                              50.00746 
 3=Died from causes other than melanoma     65.28571 

 
We can compute the difference of sample means between status levels. For instance, 
patients who died from causes other than melanoma are 15 years older than people who 
were still alive, on average. This difference suggests that there is a relationship between 
age and survival. However, among which categorical levels? Side-by-side box plots 
help examine this question further. As Figure 9 displays, the interquartile range (i.e. the 
box’s height) of age for status level 3 is smaller than the one of levels 1 and 2. This means 
the age distribution of level 3 is less spread out and, therefore, it has less overlap with the 
age distributions of levels 1 and 2.  Now, if we compare levels 1 and 2 among each other, 
we notice that their distributions overlap considerably, suggesting that the age of 

We can compute the difference of sample means 
between status levels. For instance, patients who 
died from causes other than melanoma are 15 years 
older than people who were still alive, on average. 
This difference suggests that there is a relationship 
between age and survival. However, among which 
categorical levels? Side-by-side box plots help exa-
mine this question further. As Figure 9 displays, the 
interquartile range (i.e. the box’s height) of age for 
status level 3 is smaller than the one of levels 1 and 
2. This means the age distribution of level 3 is less 
spread out and, therefore, it has less overlap with the 
age distributions of levels 1 and 2.  Now, if we com-
pare levels 1 and 2 among each other, we notice that 
their distributions overlap considerably, suggesting 
that the age of participants in levels 1 and 2 may not 
be much different. Hypothesis testing would be ne-
cessary to corroborate these observations.

 

participants in levels 1 and 2 may not be much different. Hypothesis testing would be 
necessary to corroborate these observations. 
 

plot(melanoma$status, melanoma$age, main="Box Plot of Status vs. 
Age", xlab="Status", ylab="Age") 

 
Figure 9: Side-by-side box plots of age by status 
 
 
4.3 Two numerical variables 
 
We usually examine the possible relationship between two numerical variables by plotting 
them against each other in a scatterplot. Scatterplots show the direction, strength, 
pattern, and deviation of a relationship of two numerical variables. In Figure 10, each 
point on the scatterplot represents one participant in the sample. The x-axis represents 
the values of tumour thickness and the y-axis the values of age.  
 

plot(melanoma$thickness, melanoma$age, main="Scatter Plot of 
Thickness vs. Age", xlab="Thickness (mm)", ylab="Age") 
Figure 9. Side-by-side box plots of age by status.

the direction, strength, pattern, and deviation of a re-
lationship of two numerical variables. In Figure 10, 
each point on the scatterplot represents one partici-
pant in the sample. The x-axis represents the values 
of tumour thickness and the y-axis the values of age. 

Two numerical variables

We usually examine the possible relationship be-
tween two numerical variables by plotting them 
against each other in a scatterplot. Scatterplots show 

 

participants in levels 1 and 2 may not be much different. Hypothesis testing would be 
necessary to corroborate these observations. 
 

plot(melanoma$status, melanoma$age, main="Box Plot of Status vs. 
Age", xlab="Status", ylab="Age") 

 
Figure 9: Side-by-side box plots of age by status 
 
 
4.3 Two numerical variables 
 
We usually examine the possible relationship between two numerical variables by plotting 
them against each other in a scatterplot. Scatterplots show the direction, strength, 
pattern, and deviation of a relationship of two numerical variables. In Figure 10, each 
point on the scatterplot represents one participant in the sample. The x-axis represents 
the values of tumour thickness and the y-axis the values of age.  
 

plot(melanoma$thickness, melanoma$age, main="Scatter Plot of 
Thickness vs. Age", xlab="Thickness (mm)", ylab="Age") 

Figure 10. Scatterplot of thickness versus age.

We notice that bigger tumours are mostly observed in 
older patients, which implies a positive relationship 
between thickness and age. However, because the 
top left portion of the plot shows that older patients 
can also have smaller tumours, we do not expect the 
positive relationship between thickness and age to 
be very strong. A negative relationship would ha-
ppen if, overall, younger patients would have thicker 
tumours. 

If the points in a scatterplot are distributed resem-
bling a straight line with a non-zero slope, we say 
that the two variables have a linear relationship. A ho-
rizontal line indicates that there is no linear associa-
tion between two numerical variables. It is often the 
case that we find non-linear relationships when doing 
EDA. For instance, the pattern in a scatterplot can 
resemble an exponential or a logistic function. One 
of the objectives of EDA is to identify the function that 
best reflects the observed bivariate relationship. 

We can quantify the strength of a linear relationship 
with Pearson’s correlation coefficient. This sum-
mary statistic ranges from -1 to 1 and the sign indi-
cates the direction of the relationship. The larger the 
value is away from 0, the stronger the linear asso-
ciation. The correlation of thickness and age is 0.21, 
which indicates a moderate positive linear relation 
between these two variables, as we observed when 
analyzing the scatterplot. 
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cor(melanoma$thickness, melanoma$age) 
0.2124798 

 
 
4.4 Section Summary 
 

 
 
Figure 11: Summary of bivariate exploratory data analysis 
 

 
 
Figura 11: Resumen de análisis exploratorio de dos variables 
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Figure 11. Summary of bivariate exploratory data analysis.

CONCLUSION

Univariate and bivariate summaries and visualiza-
tions maximize data insights by revealing patter-
ns, relationships, and anomalies. Exploratory data 
analysis helps answer initial questions and examine 
assumptions beyond formal hypothesis testing and 
modeling. Although not covered in this paper, the 
treatment of outliers, missing data, and overall data 
cleaning are also important applications of EDA that 
ensure data quality. The insights gathered in EDA 
can be then used for more sophisticated data analy-
ses and modeling. 
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