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ABSTRACT

The present paper is an introduction to standard point and interval estimation methods. It covers statistical principles and sampling 
processes that are building blocks for arguably more advanced statistical analyses and inference methods. By providing examples and 
sample code in R, the paper sets an important practical basis for the theory of inferential statistics. 
Keywords: Point estimation, interval estimation, central limit theorem, law of large numbers, sampling distribution, bootstrap.

RESUMEN 

Este artículo es una introducción a métodos de estimación puntual y por intervalos. Cubre principios estadísticos y procesos de muestreo 
que son importantes para aplicar análisis y métodos de inferencia más avanzados. A través de ejemplos y código de muestra en R, el 
artículo establece una base práctica para la teoría de la estadística inferencial.
Palabras claves: Estimación puntual, estimación por intervalos, teorema del límite central, ley de los grandes números, distribución 
muestral, bootstrap.
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1. INTRODUCTION 

Estimation is the process of making inferences 
about the population based on the information from 
a sample. The present paper provides readers with 
important background on statistical principles, sam-
pling processes, and point and interval estimators. 
These topics are building blocks for hypothesis tes-
ting, regression models, and many other statistical 
methods. Hence, although a bit more theoretical, the 
content discussed herein is important for arguably 
more advanced statistical analyses. 

Throughout the paper we draw from Shahbaba’s in-
troductory book to biostatistics4 and Bruce et al.’s 
practical guide for data scientists2. Additionally, we 
analyze the dataset called “Survival from Malig-
nant Melanoma” (referred to as melanoma moving 
forward) to exemplify methods and tools. The data-
set, publicly available in the “boot” package in R., 
contains demographic and tumor characteristics of 
patients with malignant melanoma in Denmark1. 

2. SAMPLING

Research questions are answered by analyzing data 
of a representative sample taken from the population 
of interest. With caution, the conclusions reached 
at the sample level via inference methods can be 
applied at the population level. 

To simplify statistical analyses, it is common to assu-
me that all members of a sample are taken indepen-
dently from each other such that the selection of one 
participant does not affect the selection of another. 
Likewise, we assume that the members of a sample 
have the same probability distribution. That is, if we 
plotted all the variables together, they would resem-
ble a specific distribution4. Both characteristics are 
part of a property called i.i.d. that describes indepen-
dent and identically distributed random variables. 

2.1 Point Estimation and the Law of Large Num-
bers

Researchers use sample quantities, or sample statis-
tics, to estimate unknown population parameters. We 
can represent unknown population quantities either 
with a single value via point estimation or with a ran-
ge of possible values via interval estimation. 

Some of the most common point estimators of inte-
rest are the sample mean , sample proportion , 
and sample variance  s2. Point estimators are random 
variables, meaning that, if we take different samples 
from the population, we may get different estimates 
each time4. However, the Law of Large Numbers 
(LLN) states that the sample mean of i.i.d. random 
variables becomes closer to the true population 
mean as the sample size increases. The LLN also 
applies to the sample proportion since it is the mean 

of binary random variables. Justified by this law, the 
sample mean or sample proportion are estimates of 
the population mean4. 

2.2 The Sampling Distribution and the Central Li-
mit Theorem

Sample estimates may take on different values from 
one sample to another, which is why they have a pro-
bability distribution that summarizes the likelihood 
of observing all the possible values. The sampling 
distribution is the probability distribution of a sample 
statistic over many samples2,4. For instance, in the 
melanoma dataset, the mean age of the study par-
ticipants is 52 years. Nevertheless, if the study had 
taken another sample of patients with melanoma, the 
mean age of the new participants would vary. This 
is called sampling variability. Oftentimes, we only 
have access to one sample and, hence, to only one 
sample statistic. To obtain the sampling distribution, 
we resort to taking smaller samples from the origi-
nal sample. A widespread method to do so is called 
bootstrap, covered in Section 2.3. 

Two fundamental statistical principles pertain to the 
sampling distribution: the Law of Large Numbers and 
the Central Limit Theorem. The LLN states the larger 
the sample, the closer the sample mean will be to 
the true population mean. Therefore, the larger the 
sample, the narrower the variability of the sampling 
distribution2. 

The Central Limit Theorem (CLT) indicates that, for 
i.i.d random variables, the sampling distribution of 
the sample mean approximates a normal distribu-
tion as the sample size increases. Accordingly, the 
sampling distribution of the mean age of patients 
with melanoma would follow a normal distribution 
with a big enough sample size. The CLT simplifies 
statistical problems because it is valid even if the un-
derlying distribution of the source population is not 
normal. The normal-approximation formulas that are 
derived from the CLT are commonly used in statisti-
cal inference methods like confidence intervals and 
hypothesis testing2. 

2.3 The Bootstrap and Standard Error

Bootstrapping is the process of sampling with re-
placement from the original sample to estimate the 
sampling distribution of a statistic. Sampling with re-
placement means that, after we take an observation 
from the sample, we replace it such that the proba-
bility of choosing an observation remains unchanged 
from draw to draw2. Let’s suppose we want to find the 
sampling distribution of the mean age of melanoma 
patients. As explained by Bruce et al.2, the steps to 
perform the bootstrap are:

1. Draw a random value from the original sample, 
record it, and then replace it. 
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2. Repeat step 1 n times.

3. Compute the test statistic (e.g. sample mean) of 
the n resampled values.

4. Repeat steps 1 and 2 K times.

5. Use the K results to obtain insights on the sample 
statistic and its sampling distribution

The bootstrap is a powerful tool for evaluating the va-
riability of a sample statistic. The standard deviation 
of the sampling distribution is called the standard 
error (SE):

Where s is the standard deviation of the sample sta-
tistic and n is the sample size. The larger the sample 
size, the smaller the standard error. This is why the 
bootstrap can be used to assess how the sample 
size affects the sampling variability2.

The function boot from the boot package in R1 im-
plements the bootstrap and computes the standard 
error at once2. The output indicates that the mean 
age of melanoma patients in the original sample is 
52.5 years. By generating bootstrap replicates of the 
mean age, the algorithm estimates that the sample 
statistic has a bias of 0.0068 and a standard error of 
1.17 years. We use the function set.seed in the code 
to avoid having slightly different results between con-
secutive runs of the algorithm.

 
𝑆𝑆𝑆𝑆 = 𝑠𝑠

√𝑛𝑛,  
 

where 𝑠𝑠 is the standard deviation of the sample statistic and 𝑛𝑛 is the sample size. The 
larger the sample size, the smaller the standard error. This is why the bootstrap can be 
used to assess how the sample size affects the sampling variability 2. 
 
The function boot from the boot package in R 1 implements the bootstrap and computes 
the standard error at once 2. The output indicates that the mean age of melanoma 
patients in the original sample is 52.5 years. By generating bootstrap replicates of the 
mean age, the algorithm estimates that the sample statistic has a bias of 0.0068 and a 
standard error of 1.17 years. We use the function set.seed in the code to avoid having 
slightly different results between consecutive runs of the algorithm. 
 

# reate a function to obtain the mean for a given sample specified by 
the index idx  
stat_fun <- function(x, idx) mean(x[idx]) 
# Initiate boot package 
library(boot) 
# Set reproducible random samples 
set.seed(1)  
# Generate R=1000 bootstrap replicates of the mean age of melanoma 
patients, using 1000 replicates 
boot_obj <- boot(data=melanoma$age, R=1000, statistic=stat_fun) 
# Returns the observed sample mean in the original data, its bias and 
its standard error. 
boot_obj 
 
ORDINARY NONPARAMETRIC BOOTSTRAP 
Call: 
boot(data = melanoma$age, statistic = stat_fun, R = 1000) 
Bootstrap Statistics : 
    original       bias    std. error 
t1* 52.46341  0.006760976    1.171995 

 
There are noteworthy applications for the bootstrap. A benefit of the method is that it does 
not rely on the CLT or any other distribution assumptions. Therefore, it is commonly used 
in analyses that do not assume a mathematical approximation to the sampling 
distribution. The bootstrap is also widely used in predictive studies to assess the stability 

There are noteworthy applications for the bootstrap. 
A benefit of the method is that it does not rely on the 
CLT or any other distribution assumptions. Therefore, 
it is commonly used in analyses that do not assume 
a mathematical approximation to the sampling dis-
tribution. The bootstrap is also widely used in pre-
dictive studies to assess the stability and improve 
the predictive power of a model. For instance, in a 
process called bagging, the predictions of multiple 
bootstrap samples are aggregated to outperform the 
predictions of a single model2. 

It is important to note that, although the bootstrap 
allows us to have an infinite number of samples, it 
does not compensate for small sample sizes becau-
se the method itself does not generate new data2. 

3. PROBABILITY DISTRIBUTIONS

Probability distributions are mathematical functions 
that help us model a range of phenomena by esti-
mating the probability of events and the variability of 
occurrence. A key challenge in statistical problems is 
the identification of a distribution that can be properly 
applied to a variable based on its characteristics4. 
There are several distributions that have been we-
ll-researched and analyzed; this section focuses on 
the normal and Student’s t-distributions.

3.1 The Normal Distribution

The normal distribution is a bell-shaped curve that is 
symmetric around the mean, implying that the mean, 
median, and mode are close to each other and coin-

Introduction to Estimation



68 MetroCiencia Vol. 29 Nº4 (2021) 

Estadística al Día Up to Date in Statistics

cide at the peak of the curve. The normal distribu-
tion is specified with two parameters: the mean μ, 
representing the maximum point of the curve, and 
the variance  , representing the spread of the cur-
ve around the mean. A normally distributed random 
variable X is denoted as . 

3.1.1 Sampling Distribution of the Sample Mean

According to the CLT, regardless of the underlying 
distribution of the random variables , the 
sampling distribution of the sample mean is normal 
with the parameters:

The mean age of patients in the melanoma study is 
52 years and the standard deviation is 17 years. With 
a sample size of n = 205, the sample mean follows 
the distribution:

The standard error of the sample mean is equal to 
years and it reflects the extent of 

the variability of the sample mean as an estimator for 
the population mean4. 

The right panel of Figure 1 shows the density of X. 
The sampling distribution of the mean age is cente-
red on the population mean (vertical line). However, 
compared to the (unknown) theoretical distribution 
of age (left panel), the sampling distribution has a 
much smaller variance. Note the different scales on 
the x-axis4.

 𝑋𝑋  ∼ 𝑁𝑁(52,1.4) 
 

The standard error of the sample mean is equal to 𝑠𝑠/√𝑛𝑛 = 17/√205 = 1.18 years and it 
reflects the extent of the variability of the sample mean as an estimator for the population 
mean 4.  

 
The right panel of Figure 1 shows the density of 𝑋𝑋. The sampling distribution of the mean 
age is centered on the population mean (vertical line). However, compared to the 
(unknown) theoretical distribution of age (left panel), the sampling distribution has a much 
smaller variance. Note the different scales on the x-axis 4. 
 

 
 
Figure 1: Left panel: The (unknown) theoretical distribution of age, 𝑋𝑋 ∼ 𝑁𝑁(52,289). Right 
panel: Density curve for the sampling distribution 𝑋𝑋  ∼ 𝑁𝑁(52,1.4).  
 
 
3.1.2 Sampling Distribution of the Sample Proportion 
 
Based on the CLT, the sample proportion is normally distributed: 
 

�̂�𝑝  ∼ 𝑁𝑁(𝑝𝑝, 𝑝𝑝(1−𝑝𝑝)
𝑛𝑛 ), 

 
as long as 𝑛𝑛𝑝𝑝 ≥  10 𝑛𝑛(1 − 𝑝𝑝)  ≥  10, 𝑛𝑛 𝑝𝑝

126 out of the 205 participants of the melanoma study were female, the sample 
proportion follows the distribution �̂�𝑝  ∼ 𝑁𝑁(0.61,0.001). 

Theoretical Distribution of Age Sampling Distribution of Mean Age 

Figura 1. Left panel: The (unknown) theoretical 
distribution of age, . Right panel: 

Density curve for the sampling distribution 
. 

3.1.2 Sampling Distribution of the Sample Propor-
tion

Based on the CLT, the sample proportion is normally 
distributed:

As long as , where n is the 
sample size and p is the sample proportion. 

Given that 126 out of the 205 participants of the me-
lanoma study were female, the sample proportion fo-
llows the distribution .

3.2 The Standard Normal Distribution

The standard normal distribution is a normal distri-
bution with a mean of zero and a standard deviation 
(and variance) of one, N(0,1). The random variable 
of a standard normal distribution is called a z-score 
and it represents the number of standard deviations 
a value (or score) is from the mean. We can transform 
or standardize any random variable of a normal dis-
tribution with a z-score. The z-score for the ith obser-
vation of a sample is computed as follows:

where  is a normal random variable, X is the sam-
ple mean, and s is the sample standard deviation. 

Recall that the mean age of patients in the melano-
ma study is 52 years and the standard deviation is 
17 years. Assuming that age has a relatively normal 
distribution, the z-score of a 69-year old patient is 

. As the standard normal distribution in Fi-
gure 2 shows, the age of this patient would be found 
at the right hand side exactly one standard deviation 
away from the mean.

 
3.2 The Standard Normal Distribution 
 
The standard normal distribution is a normal distribution with a mean of zero and a 
standard deviation (and variance) of one, 𝑁𝑁(0,1). The random variable of a standard 
normal distribution is called a z-score and it represents the number of standard deviations 
a value (or score) is from the mean. We can transform or standardize any random 
variable of a normal distribution with a z-score. The z-score for the 𝑖𝑖𝑡𝑡ℎobservation of a 
sample is computed as follows: 
 

𝑧𝑧𝑖𝑖 = 𝑥𝑥𝑖𝑖 −𝑋𝑋
𝑠𝑠 ,  

 
where 𝑥𝑥𝑖𝑖 is a normal random variable, 𝑋𝑋 is the sample mean, and 𝑠𝑠 is the sample standard 
deviation.  
 
Recall that the mean age of patients in the melanoma study is 52 years and the standard 
deviation is 17 years. Assuming that age has a relatively normal distribution, the z-score 
of a 69-year old patient is 𝑧𝑧 = 69 −52

17 = 1. As the standard normal distribution in Figure 2 
shows, the age of this patient would be found at the right hand side exactly one standard 
deviation away from the mean. 
 

 
 
Figure 2: Standard normal distribution of age, assuming that it is normally distributed.   

 

z-score 
of a 

patient 
aged 

69 
years 

Standard Normal 
Distribution of Age 

Figura 2. Standard normal distribution of age, 
assuming that it is normally distributed.  

3.3 Student’s t-distribution

Another known probability distribution is called the 
Student’s t-distribution, which is frequently used in 
estimation problems when the sample size is small 
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and the population variance is unknown. The t-dis-
tribution is a bell-shaped curve that is “flatter” when 
compared to the normal distribution. To account for 
the uncertainty in the variation, the t-distribution gi-
ves a lower probability to the center and a higher pro-
bability to the tails2. 

The t-distribution is represented by a parameter ca-
lled the degrees of freedom (df) that is a function of 
the sample size. As exemplified in Figure 3, the lar-
ger the sample size (n > 30 as a rule of thumb), the 
more the t-distribution approximates the standard 
normal distribution.

Figura 3. Overlapped distributions: standard nor-
mal distribution, t-distribution with df=1, and t-distri-

bution with df=4.

4. CONFIDENCE INTERVALS 

Point estimation does not consider the uncertainty of 
the sample statistic (i.e. the standard error). Confi-
dence intervals overcome this limitation by providing 
a range of possible values that is likely to contain the 
unknown population parameter. A confidence inter-
val is an expression of the point estimate and its stan-
dard error, at a specific confidence level. A common 
confidence level is 95%, indicating that the interval 
is 95% likely to contain the unknown population pa-
rameter. 

Let’s dive into what a 95% confidence level means 
by assuming that the true mean age of the patients 
with melanoma in Denmark is 50 years. If we were 
to take 40 different independent samples from this 
population and find the 95% confidence interval for 
each of the sample means, we would expect 38 (or 
95%) of those intervals to contain the true population 
mean4. This example is presented in Figure 4. The 
confidence interval obtained in the study could be 
either one of the 38 intervals that contain the true po-
pulation mean or one of the two intervals that do not. 

We often have access to only one point estimate and 
one confidence interval in research studies. Hence, 
a confidence level of 95% means that we have a 95% 
confidence that the procedure that generated the in-
terval contains the true population parameter2,4. 

Figura 4. 95% confidence intervals obtained from 
40 independent samples. 95% of all the intervals 
(38/40) include the true population mean of μ=50 

(vertical dotted line).

4.1 Population Mean

Assuming that the population variance  is known, 
the 95% confidence interval for the population mean 
μ is:

The multiplier in the confidence interval formula 
is called the z-critical value and it depends on the 
confidence level. In the example above, the z-criti-
cal value is 2 because we are calculating an inter-
val with a 95% confidence level. The empirical rule 
for normal distributions, shown in Figure 5, states 
that 95% of the observations fall roughly within two 
standard deviations from the mean. To compute the 
99.7% confidence interval, we would instead multiply 
by 3. Likewise, to obtain a 68% confidence interval, 
we would use the multiplier 1. 

Introduction to Estimation
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Figura 5. The  68–95–99.7 empirical rule for nor-
mal distributions.

The definition of the z-critical value is an important 
step in interval estimation because it allows us to 
obtain the area that contains the desired confidence 
level for the interval. For any confidence level c, the 
z-critical value is denoted as . In R, we can 
easily compute the value with the function qnorm. As 
seen with the empirical rule, thezcrit for a 95% confi-
dence level is 1.96 ≈ 2.

We can then proceed to estimate the confidence in-
terval for the population mean when the population 
variance is known with the following formula:

[ 𝑥𝑥 − 2 𝜎𝜎
√𝑛𝑛

, 𝑥𝑥 + 2 𝜎𝜎
√𝑛𝑛

 ] 

 
The multiplier in the confidence interval formula is called the z-critical value and it 
depends on the confidence level. In the example above, the z-critical value is 2 because 
we are calculating an interval with a 95% confidence level. The empirical rule for normal 
distributions, shown in Figure 5, states that 95% of the observations fall roughly within 
two standard deviations from the mean. To compute the 99.7% confidence interval, we 
would instead multiply by 3. Likewise, to obtain a 68% confidence interval, we would use 
the multiplier 1.  
 

  
 
Figure 5: The  68–95–99.7 empirical rule for normal distributions 
 
 
The definition of the z-critical value is an important step in interval estimation because it 
allows us to obtain the area that contains the desired confidence level for the interval. For 
any confidence level 𝑐𝑐, the z-critical value is denoted as 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑧𝑧1−𝑐𝑐

2
. In R, we can easily 

compute the value with the function qnorm. As seen with the empirical rule, the𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 for a 
95% confidence level is 1.96 ≈ 2. 
 

# Obtain the z-critical value for a 95% confidence interval 
z_crit = qnorm(0.975) 

-3 SD        -2 SD        -1 SD                          -1 SD        -2 
SD        -3 SD 

68% 
 
 
 

95% 
 
 
 

99.7
% 

Accordingly, with a probability of 95%, the mean age of the population of melanoma patients in Denmark is 
within the interval:

The 95% confidence interval can be computed in R as described below:

# Obtain the z-critical value for a 95% confidence interval 
z_crit = qnorm(0.975) 
z_crit 
1.96 

 
We can then proceed to estimate the confidence interval for the population mean 
when the population variance is known with the following formula: 
 

[ 𝑥𝑥 − 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜎𝜎

√𝑛𝑛 , 𝑥𝑥 + 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜎𝜎

√𝑛𝑛 ]. 
 
Accordingly, with a probability of 95%, the mean age of the population of melanoma 
patients in Denmark is within the interval: 
 

[ 52.46 − 1.96 17
√205

, 52.46 + 1.96 17
√205

 ] 

[50.18,54.75] 
 
The 95% confidence interval can be computed in R as described below: 
 

# Obtain the mean age 
mean_age = mean(melanoma$age, na.rm=T) 
# Obtain the standard deviation of age 
sd_age = sd(melanoma$age, na.rm=T) 
# Obtain the sample 
sample_size = nrow(melanoma) 
 
# Obtain the z-critical value 
z_crit = qnorm(0.975) 
 
# Obtain the standard error 
standard_error =sd_age/sqrt(sample_size) 
 
# Obtain the lower bound of the CI 
mean_age - (z_crit*standard_error) 
50.18123 
# Obtain the upper bound of the CI 
mean_age + (z_crit*standard_error) 
54.7456 
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The population variance is rarely known in research 
studies because we often need to estimate the po-
pulation variance along with the population mean. In 
such cases, we estimate  with the standard error 

 and we use the t-distribution instead of the normal 
distribution. Therefore, the confidence interval for the 
population mean when the population variance is 
unknown is:

Where tcrit is obtained from a t-distribution with n-1 
degrees of freedom. 

We can use R to easily calculate the 95% CI for 
mean age in the melanoma dataset assuming  is 
unknown. The code below returns two numbers, the 
lower and upper bounds of the confidence interval. 
We are 95% confident that the true population mean 
age is between 50.17 and 54.76.

The population variance is rarely known in research studies because we often need to 
estimate the population variance along with the population mean. In such cases, we 
estimate 𝜎𝜎 with the standard error 𝑠𝑠

√𝑛𝑛 and we use the t-distribution instead of the normal 
distribution. Therefore, the confidence interval for the population mean when the 
population variance is unknown is: 
 

[ 𝑥𝑥 − 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠

√𝑛𝑛 , 𝑥𝑥 + 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠

√𝑛𝑛 ],  
 

where 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is obtained from a t-distribution with 𝑛𝑛 − 1 degrees of freedom.  
 
We can use R to easily calculate the 95% CI for mean age in the melanoma dataset 
assuming 𝜎𝜎2 is unknown. The code below returns two numbers, the lower and upper 
bounds of the confidence interval. We are 95% confident that the true population mean 
age is between 50.17 and 54.76. 
 

# Use the t.test function, specify the 95% confidence level, and use 
$conf.int to extract the confidence interval. 
t.test(melanoma$age,conf.level=0.95)$conf.int 
50.16761 54.75922 

 
Note that the confidence interval based on the t-distribution is wider than the one based 
on the normal distribution because the former accounts for the unknown variance. 
However, if the sample size increases, the t-distribution approaches the standard normal 
distribution, as seen in Figure 3. 
 
 
4.2 Population Proportion 
 
Section 2.2 specified that, under the CLT, �̂�𝑝 is normally distributed with  𝜇𝜇𝑝𝑝 =  𝑝𝑝 and 𝜎𝜎2

𝑝𝑝 =
𝑝𝑝(1−𝑝𝑝)

𝑛𝑛 . Therefore, assuming the population variance 𝜎𝜎2 is known, the confidence 
interval for the population proportion 𝑝𝑝 is obtained as follows: 
 

[ 𝑝𝑝 − 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐√𝑝𝑝(1 − 𝑝𝑝)
𝑛𝑛 , 𝑝𝑝 + 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐√𝑝𝑝(1 − 𝑝𝑝)

𝑛𝑛  ] 

 

Note that the confidence interval based on the t-dis-
tribution is wider than the one based on the normal 
distribution because the former accounts for the 
unknown variance. However, if the sample size in-
creases, the t-distribution approaches the standard 
normal distribution, as seen in Figure 3.

4.2 Population Proportion

Section 2.2 specified that, under the CLT, is nor-
mally distributed with . Therefore, as-
suming the population variance  is known, the 
confidence interval for the population proportion p is 
obtained as follows:

The 95% confidence interval for the proportion of fe-
males in the melanoma dataset can be estimated in 
R with the code below. We are 95% confident that 
the true population proportion of females is between 
0.54 and 0.68.

We can use R to easily calculate the 95% CI for mean age in the melanoma dataset 
assuming 𝜎𝜎2 is unknown. The code below returns two numbers, the lower and upper 
bounds of the confidence interval. We are 95% confident that the true population mean 
age is between 50.17 and 54.76. 
 

# Use the t.test function, specify the 95% confidence level, and use 
$conf.int to extract the confidence interval. 
t.test(melanoma$age,conf.level=0.95)$conf.int 
50.16761 54.75922 

 
Note that the confidence interval based on the t-distribution is wider than the one based 
on the normal distribution because the former accounts for the unknown variance. 
However, if the sample size increases, the t-distribution approaches the standard normal 
distribution, as seen in Figure 3. 
 
 
4.2 Population Proportion 
 
Section 2.2 specified that, under the CLT, �̂�𝑝 is normally distributed with 
  𝜇𝜇𝑝𝑝 =  𝑝𝑝 and 𝜎𝜎2

𝑝𝑝 = 𝑝𝑝(1−𝑝𝑝)
𝑛𝑛  . Therefore, assuming the population variance 𝜎𝜎2 is known, 

the confidence interval for the population proportion 𝑝𝑝 is obtained as follows: 
 

[ 𝑝𝑝 − 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐√𝑝𝑝(1 − 𝑝𝑝)
𝑛𝑛 , 𝑝𝑝 + 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐√𝑝𝑝(1 − 𝑝𝑝)

𝑛𝑛  ] 

 
The 95% confidence interval for the proportion of females in the melanoma dataset can 
be estimated in R with the code below. We are 95% confident that the true population 
proportion of females is between 0.54 and 0.68. 
 

# Obtain the number of females in the sample 
n_female = sum(melanoma$sex == 0) 
# Obtain the sample size 
sample_size = length(!is.na(melanoma$sex))  
# Use the prop.test function, specify the 95% confidence level, and 
use $conf.int to extract the confidence interval. 
prop.test(x = n_female, n = sample_size, conf.level = 0.95)$conf.int 
0.5440159 0.6808823 

 
5. CONCLUSION

The present paper deals with point and interval es-
timation methods. It provides an introduction to the 
Law of Large Numbers and the Central Limit Theo-
rem. These principles simplify problems in statistics 
by making normal approximations and justifying the 
estimation of population parameters. By discussing 
basic probability distributions and sampling methods 
like the bootstrap, the paper sets an important basis 
for the theory of inferential statistics. 
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